Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Diagnostics (Basel) ; 12(11)2022 Nov 21.
Article in English | MEDLINE | ID: covidwho-2115962

ABSTRACT

We developed and standardized an efficient and cost-effective in-house RT-PCR method to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We evaluated sensitivity, specificity, and other statistical parameters by different RT-qPCR methods including triplex, duplex, and simplex assays adapted from the initial World Health Organization- (WHO) recommended protocol. This protocol included the identification of the E envelope gene (E gene; specific to the Sarvecovirus genus), RdRp gene of the RNA-dependent RNA polymerase (specific for SARS-CoV-2), and RNase P gene as endogenous control. The detection limit of the E and the RdRp genes were 3.8 copies and 33.8 copies per 1 µL of RNA, respectively, in both triplex and duplex reactions. The sensitivity for the RdRp gene in the triplex and duplex RT-qPCR tests were 98.3% and 83.1%, respectively. We showed a decrease in sensitivity for the RdRp gene by 60% when the E gene acquired Ct values > 31 in the diagnostic tests. This is associated with the specific detection limit of each gene and possible interferences in the protocol. Hence, developing efficient and cost-effective methodologies that can be adapted to various health emergency scenarios is important, especially in developing countries or settings where resources are limited.

2.
Healthcare (Basel) ; 10(1)2021 Dec 30.
Article in English | MEDLINE | ID: covidwho-1580871

ABSTRACT

BACKGROUND: Saliva of patients with COVID-19 has a high SARS-CoV-2 viral load. The risk of spreading the virus is not insignificant, and procedures for reducing viral loads in the oral cavity have been proposed. Little research to date has been performed on the effect of mouthwashes on the SARS-CoV-2 virus, and some of their mechanisms of action remain unknown. METHODS: SARS-CoV-2 positive nasopharyngeal swabs measured by RT-PCR were used for virucidal activity in a 1:1 ratio, with an incubation time of 1 min. The solutions used in this study were: iodopovidone (8 mg); * D-limonene, a terpene extracted from citrus peels (0.3%); † cetylpyridinium chloride (0.1%) (CPC); ‡ chlorhexidine gluconate (10%) (CHX); § a CPC (0.12%) and CHX (0.05%) containing formula; ** a formula containing essential oils; †† a CPC containing formula (0.07%); ‡‡ a D-limonene (0.2%) and CPC (0.05%) containing formula; §§ a solution containing sodium fluoride (0.05%) and CPC (0.075%); *** a solution containing CHX (0.12%) and; ††† a CHX (0.2%) containing formula. ‡‡‡ As a control reaction, saline solution or excipient solution (water, glycerin, citric acid, colorant, sodium citrate) was used. CONCLUSION: Within the limitations of this study, we can conclude that a mouthwash containing both D-limonene and CPC reduced the virucidal activity in about 6 logs (>99.999% reduction). Hence, establishing a clinical protocol for dentists is suggested, where all patients to be treated rinse pre-operatively with a mouthwash containing both D-limonene and CPC to reduce the likelihood of infection with SARS-CoV-2 for dentists. This is a relatively inexpensive way to reduce viral transmission of SARS-CoV-2 from infected individuals within the community. It is also a simple way to decrease infections from asymptomatic and pre-symptomatic patients.

3.
Molecules ; 26(1)2020 Dec 23.
Article in English | MEDLINE | ID: covidwho-1024615

ABSTRACT

Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.


Subject(s)
Artificial Intelligence , COVID-19 Testing/methods , COVID-19/virology , Models, Biological , Real-Time Polymerase Chain Reaction/methods , Reverse Transcriptase Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Big Data , Humans , Reproducibility of Results , SARS-CoV-2/genetics
4.
Molecules ; 26(1):20, 2021.
Article in English | ScienceDirect | ID: covidwho-984922

ABSTRACT

Real-time reverse transcription (RT) PCR is the gold standard for detecting Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), owing to its sensitivity and specificity, thereby meeting the demand for the rising number of cases. The scarcity of trained molecular biologists for analyzing PCR results makes data verification a challenge. Artificial intelligence (AI) was designed to ease verification, by detecting atypical profiles in PCR curves caused by contamination or artifacts. Four classes of simulated real-time RT-PCR curves were generated, namely, positive, early, no, and abnormal amplifications. Machine learning (ML) models were generated and tested using small amounts of data from each class. The best model was used for classifying the big data obtained by the Virology Laboratory of Simon Bolivar University from real-time RT-PCR curves for SARS-CoV-2, and the model was retrained and implemented in a software that correlated patient data with test and AI diagnoses. The best strategy for AI included a binary classification model, which was generated from simulated data, where data analyzed by the first model were classified as either positive or negative and abnormal. To differentiate between negative and abnormal, the data were reevaluated using the second model. In the first model, the data required preanalysis through a combination of prepossessing. The early amplification class was eliminated from the models because the numbers of cases in big data was negligible. ML models can be created from simulated data using minimum available information. During analysis, changes or variations can be incorporated by generating simulated data, avoiding the incorporation of large amounts of experimental data encompassing all possible changes. For diagnosing SARS-CoV-2, this type of AI is critical for optimizing PCR tests because it enables rapid diagnosis and reduces false positives. Our method can also be used for other types of molecular analyses.

SELECTION OF CITATIONS
SEARCH DETAIL